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constant in terms of the molecular properties of the equilibrium 
configurations of the reactant and product systems.8 The 
theoretical treatment has been applied to a variety of thermally 
activated rate processes: dielectric relaxation of polar molecules 
in nonpolar solvents,1 interstitial migration in ionic crystals,1-3 

carbocation rearrangement,4 and bimolecular reactions in 
liquid solvent media.9 The purpose of this paper is to present 
a QSM model for photochemical reactions in dense media. 

A thermally activated process may be described as a nuclear 
rearrangement of a system from one local equilibrium con­
figuration (reactants) to another (products). It is common to 
partition the multidimensional configuration space of the 
system into a reaction coordinate R and the remaining degrees 
of freedom (d.f.) "normal" to R. From a classical viewpoint, 
the rearrangement takes place as the system traverses R from 
reactants to products. From a quantum-dynamical point of 
view, the rearrangement is induced by a coupling between the 
zero-order states of reactant and product. In the QSM model 
which we have developed,1 -3^7'8 the rate constant, calculated 
by perturbation theory, depends explicitly upon the displace­
ment AR between the equilibrium configurations of reactant 
and product, the activation barriers £ a between reactant and 
product configurations, i.e., the maximum in the potential-
energy profile along R, and the effective mass mT and fre­
quency W1. of vibration of the "reactive complex" along R at 
the local minimum of the reactants.8 The concept of the re­
active complex, which we shall delineate fully below, should 
not be confused with that of "activated complex" in the 
TST. 

A proper consideration of photochemical reactions extends 
beyond the discussion of thermally activated rate processes. 
It is necessary to take into account the various competitive 
processes consequent to the photoactivation of the reactive 
system. A molecule absorbs a photon and undergoes transition 
to a chemically active state, a reactive complex that may un­
dergo the following competitive processes: (a) photophysical 
relaxation via radiative or radiationless pathways that return 
the molecule to its ground state (the "back reaction") and (b) 
chemical reaction that results in ionization, isomerization, or 
fragmentation of the reactant molecule. Of primary interest 
to the photochemist is the quantum efficiency of the photo­
chemical pathway, which may be expressed in terms of the rate 
constants for the various competing processes.13 

A great deal of attention has been devoted to the treatment 
of photophysical processes in isolated molecules7*1'14 and 
molecular systems in condensed phases.7'15 While photo-
isomerization16'17 and photofragmentation18 of isolated 
molecules have been examined by several authors, no effort 
thus far has been made to develop a model for photochemical 
processes in dense media. In the following section we describe 
such a model that explicitly invokes the role of solvent. We have 
specialized this description to photofragmentation reactions, 
although with suitable modifications it can be extended to other 
types of photochemical processes. In section III, we develop 
explicit expressions for the rate constants for deactivation and 
primary reaction. Section IV is then devoted to application of 
the model to the geminate recombination of iodine atoms in 
solution. We close in the last section with a summary of the 
principal features of our model, some possible extensions, and 
a brief comparison with "activated complex" theory. 

II. The Physical Model 
Consider a dilute solution of molecules AB in solvent S. We 

assume the existence of electronically excited states accessible 
by absorption of a photon according to 

AB + hv-+(A-- -B)* (1) 

where the asterisk denotes an excited state. The photoexcita-

tion of a vapor-phase molecule into the state (AB)* normally 
leads quickly to dissociation. In solution, however, the entity 
(A-B)* is quasi-bound, i.e., it is held together by the solvent 
cage at appropriately small values of RAB (the separation of 
the centers of mass of the fragments A and B). The state 
(A-B)*, which we term the "reactive complex", may be 
deactivated via photophysical relaxation with rate constant 

(A-- -B)* -^V (AB) (2) 

The deactivation competes with dissociation 

( A - - - B ) * - J ^ A * + B* (3) 

having a rate constant kr. Process 3 is generically known as the 
primary photochemical reaction. The resulting solvent-sepa­
rated fragments A* and B* may recombine and deactivate to 
give AB, or they may diffuse away from each other, eventually 
encountering other species with which they can undergo sec­
ondary reactions. 

Processes 2 and 3 both involve the relaxation of (A-B)* 
from some initial distribution of vibronic levels. The energy 
given up (or absorbed) in transitions between initial and final 
vibronic levels must be absorbed (or given up) by modes of 
motion (i.e., d.f.) other than RAB (i.e., the reaction, or disso­
ciation, coordinate). The efficiency with which a given mode 
can mediate the vibronic transitions depends upon the strength 
of its coupling to J?AB- Thus, in developing a theory of the re­
laxation processes 2 and 3, we must consider the possible dy­
namical participation of the following additional d.f.: (1) lo­
calized oscillatory motions of centers of mass of (A-B)* itself 
or neighboring S molecules; (2) orientational (i.e., rotational 
or librational) motions of AB or S; (3) internal (i.e., vibra­
tional) modes of AB or S; (4) radiation-field modes. 

As an illustrative example, and in the calculation of km to 
follow, we assume that A, B, and S are structureless, i.e., they 
possess no internal d.f. Further, we neglect orientational mo­
tions. We adopt as d.f. "relevant" to the relaxation process the 
dissociation (reaction) coordinate RAB and the center-of-mass 
(COM) coordinate r of the reactive complex. In the spirit of 
the Lennard-Jones-Devonshire cell model,19 we smear the Z 
nearest-neighbor S's over the surface of a sphere to give a cell 
potential which effectively confines the reactive complex to a 
solvent cage. Fixing r, we sketch a profile (along .RAB) ' n 

Figure 1 of the Born-Oppenheimer adiabatic potential-energy 
surfaces for the ground state and a typical photoactive excited 
state. At small values of /?AB the potential curves are deter­
mined mostly by intramolecular (chemical bonding) forces, 
and differ little from those for the isolated AB. As /?AB in­
creases, the intermolecular interactions between AB and S 
become increasingly important. The potential energy rises until 
the fragments pass over the "solvent" barrier, beyond which 
they become a solvent-separated pair, each fragment occupying 
its own cell. 

HI. Expressions for the Rate Constants 
The rate constant kT for the primary reaction 3 may be 

calculated roughly within the framework of the simple QSM 
theory developed in ref 8. We explicitly consider only motion 
along R AB and approximate the potential-energy curves of the 
reactive complex and the solvent-separated pair by two hori­
zontally displaced harmonic wells (see Figure 1). The disso­
ciation of (A-B)* results from a coupling between the har­
monic zero-order states of (A-B)* and A* + B*. Following 
Freed and Fong,3 we take this coupling to be simply the dif­
ference between the "true" adiabatic surface (solid line in 
Figure 1) and the harmonic fit (dashed line in Figure 1) 
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Figure 1. Schematic diagram of the potential-energy curves for the 
ground-state molecule AB and the excited reactive complex (A-B)*. The 
dotted (•••) portions of the curves refer to the isolated molecule and the solid 
(—) ones to the molecule contained in the solvent cage. The shaded area 
represents the effect of the solvent, which is assumed to be the same in both 
states. The dashed (- - -) curves are harmonic approximations to the po­
tential wells of the quasi-bound (A-B)* and solvent-separated pair A* 
+ B*. For the sake of simplicity, it is assumed here and in the text that the 
harmonic potentials have the same force constants, i.e., frequencies of 
vibration, and are displaced from one another horizontally (along the re­
action coordinate) by ARAB and vertically by Aeo- The / and/denote two 
specific vibronic levels of (A-B)* and AB, respectively. 

thereto. By previously described3 procedures we get 

kr = \V'\2h-2[m^HARABnBTh-2/2Tr]-^2 

X exp|-[A£o - mro>r
2(AJ?AB)2]2/[2mruT

2(ARAB)2kBT]} 

(4) 

where h is Planck's constant, kB is Boltzmann's constant, T 
is the absolute temperature, mT and o>r are the effective mass 
and frequency, respectively, of the vibration of (A-B)* along 
RAB-, and ARAB and Aeo are respectively the horizontal and 
vertical displacements of the (assumed) harmonic potentials. 
In arriving at eq 4, we have invoked the following approxi­
mation. The coupling potential V'(RAB) is peaked at the point 
of intersection (cusp) of the harmonic curves (see Figure 1). 
Since the overlap of the zero-order states is greatest in the vi­
cinity of this cusp, we can replace the full V(R AB) in the in­
tegrand of the coupling matrix elements by its value at the 
cusp. Thus, in eq 4 V is just the difference between the cusp 
and the corresponding point on the "true" curve. 

The calculation of the rate constant knr for the "back re­
action" 2 can be accomplished by the following scheme. We 
assume, as discussed in section II, that the COM coordinate 
(r) of AB plays an explicit dynamical role in the deactivation 
process. Hence, we take as the strongly coupled "relevant" 
modes of motion RAB and r, i.e., the stretching motion of 
(A-B)* and the wall-to-wall bouncing of (A-B)* in its solvent 
cage. For the zero-order states, we assume products of vibronic 
levels (i of (A-B)* or/of ground-state AB) and the localized 
translation-like states of the COM motion in the effective 
potential due to AB in the corresponding vibronic level (/ or 
f). We further assume that the effective COM potentials are 
harmonic, with the force constant (frequency) depending upon 
the vibronic level. The reactive complex is deactivated via 
transitions / —•/induced by vibronic non-Born-Oppenheimer 
coupling (// 'NBO); the excess energy is accepted by the COM 
mode and subsequently dissipated into the solvent modes. 

The deactivation rate constant may be expressed formally 

as 

Kr = 2*ft-' E L Pm 2Z2Z\(ivi\H'^o\fvf) 12 

i vt f vf 

X5(Ehi-Efv/) (5) 

where /' labels vibronic levels of (A-B)* and/those of AB, v, 
and Vf denote, respectively, the corresponding COM states, 
Pi111 is the probability that (A-B)* is initially in vibronic level 
/ and COM state vt, having total energy 

The coupling matrix element is given more explicitly by 

{ivtW'wiottvf) = fdre fd/?AB fdr 
X 0ex*(re; RAB)XiHRAB)^v*(r)H'NBO 

X 4>g (T,; RAB)X/(RAB)^^) 

where <j>ex and 0g are the Born-Oppenheimer electronic wave 
functions for (A-B)* and AB, respectively, Xi and x/ are the 
vibrational wavefunctions associated with initial and final vi­
bronic levels, and \I>„( and <SfVf are the initial and final COM 
localized, translation-like wave functions. In general, the op­
erator / / 'NBO acts upon both electronic (re) and nuclear (RAB, 
r) coordinates. However, assuming for simplicity that / / 'NBO 
operates only upon <j>& and also invoking the Franck-Condon 
approximation for both the vibrational (/?AB) and COM(r) 
modes, we have 

where 

( / V , | / / ' N B 0 | . / V > = ^e lec<Xi |x/X"i |>y> 

^elec = Jdre0ex*//'NBO<i!>g 

(6) 

is evaluated at the minimum of the adiabatic curve for (A-B)* 
(see Figure 1). 

Substituting eq 6 into eq 5, we can evaluate the average over 
Vf and sum over vt by standard procedures.20,21 Assuming that 
only the frequency of the COM mode shifts, we get 

km = ft-2(2x)>/2 e\ Kelec|
2 E Pi ZI (X<\Xf) 12(AW//)-' 

< / 
X [ I - exp(-hui/kBT)] expl-AeifWi/iAoofiknT)] (7) 

where e is the base of the natural logarithm, p/ is now the 
probability that (A-B)* is initially in vibronic level i (irre­
spective of the state of the COM mode), w,- and ay are the 
frequencies of the harmonic COM modes with (A-B)* in level 
;' and AB in level/, Aey is the energy difference between levels 
/ and/, and Aay(= ay — «,-) is the shift in the frequency of the 
COM mode associated with the vibronic transition i -*f. 

In reaching eq 7 we have assumed 

ay > Wi 

which is physically reasonable. The effective cell potential 
"seen" by the COM mode is overall quite anharmonic. How­
ever, in the initial state, the COM mode is not highly excited 
and hence the amplitude of the COM motion is relatively 
small, i.e., it "sees" only the region near the minimum of the 
cell potential, which can be well approximated by a harmonic 
potential of low frequency (a>/). In the final state the COM 
mode is relatively more excited, having accepted energy A«y 
from the internal mode (RAB) of (A-B)*. Hence, the COM 
executes relatively large-amplitude oscillations within the cell 
and thus "sees" the steeper portions of the cell walls most of 
the time. These steeper portions of the cell potential are ef­
fectively represented by a harmonic potential of greater fre­
quency (ay). 

We note that each term of the right side of eq 7 exhibits an 
Arrhenius temperature dependence with an activation ener­
gy 
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(E3) if= Ae,/co,/Aco/j 

WAB«,(2CO,- + Aco/,>o2/4 (8) 

where WAB is the mass of AB and ro is the value of r at the 
intersection of the harmonic COM curves corresponding to 
levels i and/(see Figure 2). The frequency shift Aw/,- is re­
sponsible for this intersection. The activation energy (£a),/is 
clearly related to the COM energy of the reactive complex 
measured from the minimum of the COM potential curve i. 
It is evident from Figure 2 that (£a),/increases with increasing 
At if and/orco,- and that it decreases with increasing co/ and/or 
Aufi for fixed co,. 

In order to write eq 7 in closed form, we further assume that 
co,', Awf„ and Ae/j are approximately constant and replace them 
by their average values co, Aw, and A?. Invoking the rela­
tions 

Z|x/Xx/| = i 

we can perform the sums in eq 7 to obtain 

knT = (27r)1/2e^-2|Kdec |2 (A^ )-i[1 _ cxp(-hu/kBT)] 

X exp[-Aew/(Aw/tBr)] (9) 

from which we see that the deactivation rate follows predom­
inantly an Arrhenius temperature dependence with an average 
activation energy 

£ a = Aeco/Aco 

IV. Application 

The rate constant for deactivation /cnr is seen from eq 9 to 
be strongly dependent on the solvent through the exponential 
factor 

exp[-A«oJ/(A«A:Br)] 

For a given solute AB it is convenient to express the solvent 
dependence of the rate constant in terms of the ratio 

M U / M 2 ) a* exp[-A?(w! - U2)Z(AuIc1IT)] (10) 

where the indices 1 and 2 denote two different solvents. The 
electronic coupling matrix element Kelec in eq 9 is only weakly 
dependent on the solvent and is accordingly canceled out in the 
approximate expression 10. In writing eq 10 we have made the 
further approximations that 

hu « kBT 

and that the difference quantities Ae and AoT are relatively 
insensitive to the solvent. In picosecond studies22 of geminate 
recombination of I atoms in organic liquid solvents it has been 
established empirically that &nr(CCl4) < fcnr(C8Hi8). Using 
eq 10, we may interpret this experimental observation in terms 
of the inequality 

W(CCl4) > ^(C8H18) 

which is consistent with the expectation that the nearly 
spherical CCI4 molecules would form a tighter solvent cage 
about the (I—I) than would the irregularly shaped, gangly 
C8Hi8 molecules. The tighter cage should result in a higher 
frequency of COM oscillation. 

In order to arrive at a manageable, closed expression for A:nr 
(eq 7) we have introduced several approximations (in addition 
to perturbation theory, upon which the formal expression for 
km rests from the outset). The Franck-Condon approximation 
(eq 6), made almost universally in theories of radiationless 
transitions, is valid if Kelec does not depend strongly upon RAB 
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Figure 2. Sketch of the adiabatic potential-energy curves for the center-
of-mass (COM) motion. The upper curve represents the effective potential 
energy "seen" by the COM of the reactive complex (A-B)* when it is in 
vibronic level;'; the lower curve is that "seen" by the AB molecule in level 
/ o f its ground state (see Figure 1). The potential curves are approximated 
by harmonic wells of frequencies w, and oy, respectively, with uy > u>,. The 
reactive complex is deactivated by a transition (arising from coupling of 
the reaction coordinate and the COM coordinate r) between levels i and 
/ , releasing energy Acy, which is first accepted by the COM mode and then 
dissipated into the solvent, which functions as a heat bath. The frequency 
difference Auy has been exaggerated in order to emphasize certain features 
of the curves. As Auy -» 0 the vertical distance between the intersection 
of the curves (which occurs at r = ro) and the minimum of the upper curve 
approaches one-half the activation energy defined by eq 8. 

or r. If Felec should vary substantially with RAB or r, it may be 
expanded in Taylor's series about its minimum and the cor­
rections included in the evaluation of the coupling matrix el­
ement (ivi\H'vBO\fVf).".™ 

We have also assumed that the COM potential curves are 
harmonic and that the minima coincide, i.e., that only the 
frequency of the mode shifts, not its equilibrium position. This 
assumption appears to be appropriate for homonuclear di­
atomic molecules such as I2. however, in the case of reactive 
systems consisting of dissimilar fragments A and B, it may be 
necessary to allow for small displacements in the COM po­
tential curves. This can be easily managed by the same tech­
niques used in the so-called weak-coupling limit of radiationless 
electronic relaxation.7b 

Finally, we observe that while it seems reasonable to assume 
that to,-, co/, and Aco/,- are independent of i and/, Ae,/may de­
pend strongly on the initial and final levels. Hence, in general, 
for greater accuracy one must evaluate each term of the sum 
in eq 7 individually. 

V. Summary and Discussion 

We have developed here a model for photochemical reac­
tions in dense media. We have specialized the model to pho-
tofragmentation, although it can readily be extended to other 
photochemical reactions, e.g., photoisomerism. Among the 
main features of the model is the photoexcitation of a reactive 
complex, which can either be deactivated to the ground state 
or decompose to yield the primary products. We assume that 
the vibronic levels of the system can be described in the 
Born-Oppenheimer adiabatic approximation. The primary 
reaction, i.e., the decomposition of the reactive complex (A-
"B)*, occurs via a nuclear rearrangement along the reaction 
coordinate i?AB and is due to (potential) coupling between the 
states of (A-B)* and the solvent-separated pair A* and B*. 
Only motion along the reaction coordinate is explicitly treated. 
Our description of the deactivation process, on the other hand, 
accounts explicitly for the dynamical participation of several 
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degrees of freedom. In the simple version developed here, we 
have included only i?AB and the center-of-mass coordinate r. 
The center-of-mass motion accepts the energy released in the 
deactivating vibronic transitions originating from levels / of 
(A-B)*. 

In general, of course, a variety of modes may strongly par­
ticipate in the dynamics of either relaxation process (see eq 2 
and 3). For example, like the COM mode of AB, the orienta­
tional mode of AB or the COM (or orientational) modes of the 
solvent (S) molecules are of relatively low frequency and could 
function to accept relatively small amounts of energy. Hence, 
these modes should efficiently mediate relatively low-energy 
vibronic transitions. On the other hand, the internal vibrational 
modes of AB or S are of relatively high frequency and could, 
by single or few-quantum excitations, with the assistance of 
the lower frequency COM modes, provide many pathways by 
which higher energy vibronic transitions could be mediated. 
The efficiency of these various pathways depends, of course, 
upon the strength of coupling between RAB and the accepting 
mode. 

It is of interest to note the close analogy that exists between 
the present view of photodissociation processes and the pre­
viously described model for the photosynthetic primary light 
reaction.25 The photoactivation of (A-B)* followed by the 
primary dissociative reaction to yield the A* and B* fragments 
in the present case corresponds formally to the photoexcitation 
of the charge transfer (CT) state in the reaction-center chlo­
rophyll (ChI aj resulting in the oxidation of (ChI a} and the re­
duction of the primary electron acceptor A in the photosyn­
thesis problem (compare Figure 1 with Figure 1 of ref 25). In 
both cases, the quasi-bound state (A-B)* and the CT state in 
JChI aj are envisaged to be electronically excited states of the 
reactants. Both of these states are photophysically connected 
with their respective ground-state species through nonreactive 
pathways with associated rate constants given approximately 
by eq 9. 

We close by emphasizing that our concept of the reactive 
complex differs fundamentally from that of the activated 

We develop here a qualitative MO model3 of the electron­
ic structures of certain molecules and ions with the general 
formulas A2B2,,. The model is based on extended Hiickel cal-

complex in transition-state theory. Unlike the activated 
complex, a transient species located at the top of the barrier 
to chemical reaction, the reactive complex in our theory is a 
stable molecular entity (in the zeroth order of time-dependent 
perturbation theory). Aside from this conceptual difference, 
the present formulation provides explicit expressions for the 
rate constant, eq 4 and 9, in terms of molecular parameters and 
thermodynamic state variables (e.g., temperature). Numerical 
fits of rate data using eq 4 and 9 should therefore furnish useful 
information about the microscopic properties of the system 
which are most influential in determining its dynamical be­
havior. 
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culations4 for a number of different A2B2, A2B4, and A2B6 
systems. The calculations and the qualitative model assume 
that MOs are formed from a basis set consisting of a single s 
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Abstract: In symmetric A2B4 molecules and ions with 34 and 38 valence electrons, two AB2 monomers are joined by an A-A 
single bond. In 50-electron ethanelike A2B6 structures, two AB3 monomers are also linked by an A-A single bond. Symmetric 
BAAB systems with 18 and 26 electrons have A-A single bonds. A qualitative MO model of the electronic structures of these 
systems is developed and then used to explain observed trends of increasing A-A bond strength with increasing electronegativi­
ty difference AX between central atoms A and substituents B. An increase in AX tends to strengthen the A-A bond in the A2B4 
and A2B6 classes. For example, the central bond in F2B-BF2 is much stronger than that in O2N-NO2. Larger AX increases 
the weighting and extent of hybridization of the central atom AOs in the orbitals responsible for net bonding in these systems. 
While the same rule holds for the 26-electron BAAB series, the reverse is true for the 18-electron examples. For instance, the 
central C-C bond in PCCP is stronger than that in NCCN for which AX is larger. The same principles apply in these cases but 
the rule reverses because of different properties of the MO that provides net bonding. The electronegativity rule is used to ra­
tionalize the nonexistence of certain compounds or to explain their preference for less symmetric structures. 
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